BC Review 13 Calculator Permitted Do all work on separate notebook paper ____1. Let $g(x) = \int_a^x f(t)dt$, where $a \le x \le b$. The figure above shows the graph of g on [a,b]. Which of the following could be the graph of f on [a,b]? (D) The graph of the function represented by the Maclaurin series $1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots$ intersects the graph of $y = x^3$ at $x = x^2 + \dots + x^2 + \dots + x^2 + \dots$ - (A) 0.773 - (B) 0.865 - (C) 0.929 - (D) 1.000 - (E) 1.857 3. Let f be the function given by $f(x) = x^2 - 2x + 3$. The tangent line to the graph of f at x = 2 is used to approximate values of f(x). Which of the following is the greatest value of x for which the error resulting from this tangent line approximation is less than 0.5? - (A) 2.4 - (B) 2.5 - (C) 2.6 - (D) 2.7 - (E) 2.8 | t (sec) | 0 | 2 | 4 | 6 | |-----------------------------|---|---|---|---| | a(t) (ft/sec ²) | 5 | 2 | 8 | 3 | The data for the acceleration a(t) of a car from 0 to 6 seconds are given in the table above. If the velocity at t = 0 is 11 feet per second, the approximate value of the velocity at t = 6, computed using a left-hand Riemann sum with three subintervals of equal length, is - (A) 26 ft/sec - (B) 30 ft/sec - (C) 37 ft/sec - (D) 39 ft/sec - (E) 41 ft/sec 5. A particle starts from rest at the point (2,0) and moves along the *x*-axis with a constant positive acceleration for time $t \ge 0$. Which of the following could be the graph of the distance s(t) of the particle from the origin as a function of time t? 6. If $0 \le k < \frac{\pi}{2}$ and the area under the curve $y = \cos x$ from x = k to $x = \frac{\pi}{2}$ is 0.1, then $k = \frac{\pi}{2}$ - (A) 1.471 - (B) 1.414 - (C) 1.277 - (D) 1.120 - (E) 0.436 7. Let f be a function that is differentiable on the open interval (1,10). If f(2) = -5, f(5) = 5, and f(9) = -5, which of the following must be true? - I. f has at least 2 zeros. - II. The graph of f has at least one horizontal tangent. - III. For some c, 2 < c < 5, f(c) = 3. - (A) None - (B) I only - (C) I and II only - (D) I and III only - (E) I, II, and III 8. If the base b of a triangle is increasing at a rate of 3 inches per minute while its height h is decreasing at a rate of 3 inches per minute, which of the following must be true about the area A of the triangle? - (A) A is always increasing. - (B) A is always decreasing. - (C) A is decreasing only when b < h. - (D) A is decreasing only when b > h. - (E) A remains constant. 9. If g is a differentiable function such that g(x) < 0 for all real numbers x and if $f'(x) = (x^2 - 4)g(x)$, which of the following is true? - (A) f has a relative maximum at x = -2 and a relative minimum at x = 2. - (B) f has a relative minimum at x = -2 and a relative maximum at x = 2. - (C) f has relative minima at x = -2 and at x = 2. - (D) f has relative maxima at x = -2 and at x = 2. - (E) It cannot be determined if f has any relative extrema. ____ 10. Let F(x) be an antiderivative of $\frac{(\ln x)^3}{x}$. If F(1) = 0, then F(9) = - (A) 0.048 - (B) 0.144 - (C) 5.827 - (D) 23.308 - (E) 1,640.250 ## 11. 2009—BC6B (No Calculator) The function f is defined by the power series $$f(x) = 1 + (x+1) + (x+1)^2 + \dots + (x+1)^n + \dots = \sum_{n=0}^{\infty} (x+1)^n$$ for all real numbers x for which the series converges. - (a) Find the interval of convergence of the power series for f. Justify your answer. - (b) The power series above is the Taylor series for f about x = -1. Find the sum of the series for f. - (c) Let g be the function defined by $g(x) = \int_{-1}^{x} f(t) dt$. Find the value of $g\left(-\frac{1}{2}\right)$, if it exists, or explain why $g\left(-\frac{1}{2}\right)$ cannot be determined. - (d) Let h be the function defined by $h(x) = f(x^2 1)$. Find the first three nonzero terms and the general term of the Taylor series for h about x = 0, and find the value of $h(\frac{1}{2})$. ## 12. 2009—AB/BC5B (No Calculator) Let f be a twice-differentiable function defined on the interval -1.2 < x < 3.2 with f(1) = 2. The graph of f', the derivative of f, is shown above. The graph of f' crosses the x-axis at x = -1 and x = 3 and has a horizontal tangent at x = 2. Let g be the function given by $g(x) = e^{f(x)}$. - (a) Write an equation for the line tangent to the graph of g at x = 1. - (b) For -1.2 < x < 3.2, find all values of x at which g has a local maximum. Justify your answer. - (c) The second derivative of g is $g''(x) = e^{f(x)} [(f'(x))^2 + f''(x)]$. Is g''(-1) positive, negative, or zero? Justify your answer. - (d) Find the average rate of change of g', the derivative of g, over the interval [1, 3].